Stralingsprotectie bij interventionele pijnbehandeling 2017

Brigitte Saelen
Hülya Tiren
Stralingsprotectie bij interventionele pijnbehandeling

Brigitte Saelen
Hülya Tiren
Woord vooraf

Het Sint-Franciscusziekenhuis is een regionaal ziekenhuis te Heusden-Zolder dat als doelstelling heeft patiënten kwalitatieve zorg aan te bieden dicht bij huis.

Het afdelingshoofd van de pijnkliniek, Dr. K. Nelissen, wordt bijgestaan door een team van twee anesthesist-algologen. In mei zal een vierde anesthesist-algoloog ons team versterken.

Het verpleegkundig team bestaat uit vier verpleegkundigen onder leiding van Linda Saenen.

De administratieve formaliteiten worden geregeld door twee medische secretaresses.

In het kader van de multidisciplinaire werking van de pijnkliniek wordt er nauw samengewerkt met één pijnpsychologe, twee neurochirurgen en een fysisch geneesheer. Op een wekelijks overleg ontermen zij zich over complexe casussen om een optimaal pijnbeleid na te streven.
Inhoudsopgave

Woord vooraf .. 3

Inleiding ... 5

1 Wat is straling .. 6
 1.1 Soorten straling .. 7
 1.1.1 Elektromagnetische straling .. 7
 1.1.2 Deeltjesstraling ... 8

2 Stralingseenheden en grootheden .. 9
 2.1 Stralingsenergie ... 9
 2.2 Geabsorbeerde dosis ... 9
 2.3 Dosisequivalent ... 9
 2.4 Effectieve dosis .. 9

3 Eigenschappen van ioniserende straling ... 9

4 Biologische effecten van straling .. 10
 4.1 Deterministische effecten ... 11
 4.2 Stochastische effecten ... 11
 4.3 Indeling stralingschade ... 12
 4.4 Zwangerschap en straling ... 13

5 Röntgenstraling ... 14
 5.1 De C-boog ... 16

6 Transforaminale lumbale epidurale infiltratie ... 17
 6.1 Indicaties ... 17
 6.2 Soorten .. 17
 6.2.1 Therapeutische infiltraties .. 17
 6.2.2 Proefblokkade ... 17
 6.3 Procedure .. 17
 6.3.1 De infiltratie ... 17
 6.3.2 Bronnen van straling tijdens de procedure .. 18
 6.3.3 Beschermingsmaatregelen tegen de straling tijdens de procedure 19

7 Wetgeving rond stralingsprotectie .. 20

8 Algemene beschermingsprincipes ... 21
 8.1 Basisnormen .. 21
 8.2 Fysische controle .. 21
8.3 Medisch toezicht .. 22
8.4 Informatie en vorming ... 22

9 Dosimetrie .. 22

10 Stralingsbescherming ... 22

10.1 Beschermingsmiddelen voor de patiënt ... 23
10.2 Beschermingsmiddelen voor het personeel .. 23
10.2.1 De loodschoort .. 23
10.2.2 De schildklierbescherming .. 24
10.2.3 De loodbril .. 24
10.2.4 Loodhandschoenen .. 24
10.2.5 De infiltratieruimte ... 25
10.2.6 De afstand .. 25
10.2.7 De tijd ... 25
10.2.8 Dosimeter .. 25
10.2.9 Opleiding ... 25

Besluit ... 26

Literaire lijst ... 27
Inleiding

Wij, Hulya en Brigitte willen met deze informatiebundel aan, zowel verpleegkundigen als paramedici een praktische leidraad bieden om op een bewuste en gecontroleerde manier om te gaan met het risico van ioniserende straling.

Gezien het onvermogen om ioniserende stralen zintuiglijk waar te nemen, men ziet of ruikt ze immers niet, bestaat er bij velen van ons een zekere vorm van onbehagen bij het gebruik van toestellen die deze stralen uitzenden.

Bij het merendeel van de interventionele behandelingen wordt er gebruik gemaakt van röntgenstralen.

We hebben ervoor gekozen om één behandeling onder scopie toe te lichten, met name de transforaminale lumbale epidurale infiltratie. In ons pijncentrum wordt er uitsluitend gebruik gemaakt van de C-boog. Vandaar dat we in deze informatiebundel ons voornamelijk gaan richten op een goede voorlichting wat betreft het gebruik van dit toestel, de specifieke eigenschappen ervan, de gevaren die de straling met zich mee brengt en de te nemen voorzorgsmaatregelen.

Om echter de praktische richtlijnen te begrijpen en correct toe te passen is het nodig dat men over de nodige theoretische kennis beschikt.

Vandaar dat we het in deze bundel eerst zullen hebben over de soorten straling, stralingseenheden en biologische effecten. Ook plichten van werkgever en werknemer zullen aan bod komen.
1. Wat is straling

Straling is een vorm van energieoverdracht zonder dat er sprake is van direct contact, er is geen medium voor nodig.

Overal in ons dagelijks leven krijgen we te maken met straling. Denken we maar aan het zonlicht, en de kosmische straling waarvan het poollicht een mooi voorbeeld is. Elektronen wegeslingerd door de zon botsen tegen de aarde. Door het magnetisch veld van de aarde worden deze elektronen in de richting van de poolen gestuurd. Daar aangekomen komen ze in botsing met de atmosfeer van de aarde. Door reactie met zuurstofmoleculen en stikstofmoleculen in onze atmosfeer krijgen de elektronen een grotere energie waardoor ze instabiel worden. Als de moleculen uiteindelijk terug stabiel worden zenden ze een lichtflits uit en zien we het poollicht.
1.1 Soorten straling

Straling kan zowel elektromagnetisch zijn of deeltjesstraling zijn.

1.1.1 Elektromagnetische straling

Dit is een vorm van energietransport die ontstaat wanneer een elektrische lading wordt versneld. Het onderscheid tussen de stralingssoorten berust louter op frequentie verschillen. Deze straling komt in allerlei vormen voor. De niet ioniserende straling, of minder energierijke straling zoals UV-licht, zichtbaar licht, infra rood licht. Deze vorm van straling wordt opgenomen door ons lichaam zonder nefaste gevolgen. Ook hoogspanningslijnen, elektrisch aangedreven wagens, anti diefstal–en identificatie systemen alsook mobiele telefoons en TV behoren tot deze groep van straling.

Elektromagnetische straling kan ook ioniserend zijn. Ionisatie is een proces waarbij elektronen uit atomen verwijderd raken, waardoor elektrisch geladen deeltjes (ionen) achterblijven. Hierdoor treden er chemische veranderingen op in de bestaande moleculen, wat dergelijke straling vaak gevaarlijk maakt voor organismen.

Röntgen en gamma straling zijn een vorm van elektromagnetische ioniserende straling. Gammastralen zijn golfstralen van zuivere energie met een groot doordringingsvermogen, en kunnen slechts worden afgereemd door zware stoffen zoals lood en beton. Over röntgenstralen, dewelke bij ons in het pijncentrum gebruikt worden zullen we het later in deze bundel nog hebben.
1.1.2 Deeltjesstraling

Deze straling bestaat niet uit golven, maar uit atoomdeeltjes. Met name alfa- en bètastralen, elektronen, neutronen en protonenstraling. Dit type straling komt alleen vrij uit radioactieve stoffen.

Alfastralen: zijn geen golven, doch energierijke deeltjes die uitgestoten worden door onstabiele atoomkernen. Zij bestaan uit heliumkernen van twee protonen, en twee neutronen. Ze zijn relatief zwaar en groot, niet doordringend en worden snel afgeremd. Alfa-deeltjes kunnen worden tegengehouden door een stuk papier.

Bètastralen: bestaan uit zeer snelle elektronen of positronen. Het zijn lichtere energiedeeltjes en kunnen worden tegen gehouden door een aluminiumplaat.

Neutronenstraling: deze vorm van straling komt voor rond kernreactoren en versnellers. Zij bestaan uit vrije neutronen die onder andere gevormd worden bij kernsplitingsreacties. Zij kan ook ontstaan door spontane splijting van zware kernen en kan worden uitgezonden door neutronenbronnen. Neutronen worden afgeremd door licht materiaal (hout, water, paraffine). Absorptie gebeurt door cadmium.

Protonen: zijn subatomaire deeltjes met een elektrische lading en een kleine massa. Protonenstraling wordt onder meer gevormd door versnelling van waterstofionen.
2. Stralingseenheden en grootheden

2.1 Stralingsenergie

Stralingsenergie is de energie die bevat is in elektromagnetische straling. De eenheid is volgens het SI-stelsel (het internationaal stelsel van eenheden) de joule, maar geeft een veel te kleine waarde. De nieuwe eenheid is elektrovolt (eV) is de energie die een elektron wint als het een spanningsverschil van 1 volt doorloopt.

Voorbeeld: Zichtbaar licht; enkele eV
Diagnostische röntgenstraling; 30-150 KeV
Radiotherapie; 1-25 MeV

2.2 Geabsorbeerde dosis

De geabsorbeerde dosis is de hoeveelheid energie per massa eenheid. De eenheid wordt uitgedrukt in Gray. 1Gy is gelijk aan een energie afgifte van 1 joule in 1kg weefsel. De oude eenheid is rad, waarbij 100 rad gelijk is aan 1 Gy.

2.3 Dosisequivalent

Niet voor elke stralingsoort en energie is de biologische schade identiek. Eenzelfde dosis alfastraling, zal plaatselijk meer schade aanrichten dan een dosis gammastraling. Dit verschil van biologische effectiviteit van de verschillende stralingsoorten wordt in rekening gebracht d.m.v. de stralingsweegfactor (Wr). De geabsorbeerde dosis heeft de naam Sievert gekregen. De oude eenheid is rem. 1 Sv is gelijk aan 100 rem.

2.4 Effectieve dosis

De effectieve dosis is de dosis die rekening houdt met de orgaangevoeligheid via de weefselfactor. Het ene weefsel is gevoeliger voor straling dan het andere. Zo is beenmerg bijvoorbeeld veel gevoeliger aan blootstelling door straling dan spierweefsel. De weefselfactor uitgedrukt in mSv brengt deze verschillen in rekening.

3. Eigenschappen van ioniserende straling

De voornaamste eigenschappen van ioniserende straling zijn

Rechtlijnige voortplanting: geen weerkaatsing op lenzen of spiegels.

Verzwakkingsffect: de kracht van een röntgenstraal vermindert door de absorptie (vb. loodschort), de afstand en strooiing onder de vorm van secundaire straling.

Fotografisch effect: sommige stoffen (zinksulfide) kunnen licht uitzenden als zij door röntgenstralen worden getroffen. Dit kent in de radiologie zijn toepassing voor het vormen van een beeld op een röntgenplaat.
Ionisatie effecten: elektronen van atomen worden uit hun baan getrokken.

Biologische effecten: het vernietigend effect leidt tot cel schade of cel dood.

4. Biologische effecten van straling

Blootstelling aan ioniserende straling levert risico's op voor de gezondheid. Hoewel de kans op deze nadelige effecten bij medische beeldvorming erg klein is, moeten we er toch voorzichtig mee om gaan. Enige kennis over de gevolgen van straling is dan ook een must. Stralingseffecten worden veroorzaakt door stralingsschade ten gevolge van interactie van ioniserende stralen met de cel. De weefsels in ons lichaam verschillen in gevoeligheid voor blootstelling aan ioniserende straling. Om een schatting te kunnen maken van het totale risico van blootstelling is er voor elk weefsel een weegfactor opgesteld. Bij de biologische effecten van ioniserende straling wordt er een onderscheid gemaakt tussen deterministische en stochastische effecten.
4.1 Deterministische effecten

Dit zijn effecten op korte termijn.

Er bestaat een drempelwaarde.

Bij deterministische effecten varieert de ernst van hun effect met de stralingsdosis. Schade aan weefsels en organen treedt pas op als er een drempeldosis wordt overschreden. De gevolgen van deterministische schade hangt af van het aantal beschadigde cellen, de herstelprocessen en mogelijke re-populatie in het aangedane weefsel. Schade kan reeds op korte termijn optreden, en dit varieert van enkele weken tot maanden. De effecten die worden waargenomen uiten zich voornamelijk ter hoogte van de huid, het maagdarmstelsel en de ogen.

Enkele voorbeelden: Tijdelijke steriliteit bij de man treedt op bij een drempeldosis van 150mSv. Huiderytheem treedt op bij een dosis van 2 mSv.

4.2 Stochastische effecten

Dit zijn effecten op lange termijn

Bij stochastische effecten wordt de waarschijnlijkheid van optreden, en niet de ernst van het effect als een functie van de dosis beschouwd, waarbij aangenomen wordt dat er geen drempelwaarde bestaat.

Stochastische effecten kunnen optreden tot vele jaren na blootstelling. Zij kunnen zowel ontstaan bij hoge als bij lage dosissen. De kans neemt echter toe bij hogere dosissen.

Enkele voorbeelden: Erfelijke aandoeningen bij de nakomelingen. Kanker Leukemie
4.3 Indeling stralingsschade

Ioniserende straling

DNA-schade

- celdood
- herstel-respons
- mutatie

Deterministische effecten/weefseractie

- vroeg (acuut)
- laat (chronisch)

Stochastische effecten

- genetisch
- somatisch

- volwassen

- foetaal teratogeen
4.4 Zwangerschap en straling

Alhoewel de blootstelling aan ioniserende straling op elke leeftijd een risico inhoudt, is de blootstelling aan stralen van embryo's en foetussen bijzonder zorgwekkend. Omwille van de snelle cel vernieuwing en complexe ontwikkelingsmechanismen van het organisme zijn de gevolgen bij embryo's en foetussen meer gevarieerd en uitgesproken en komen ze reeds voor bij lage dosissen. De grootste risico's zijn het ontstaan van kanker, aangeboren afwijkingen en aantasting van de hersenfuncties.

Toch is het belangrijk te weten dat het blootstellen van embryo's en foetussen niet automatisch en noodzakelijk leidt tot schadelijke gevolgen. Het risico hangt o.a. af van de stralingsdosis en de fase waarin de zwangerschap zich bevindt.

Bepaalde schadelijke gevolgen komen enkel voor boven een bepaalde stralingsdosis: er is geen gevaar wanneer de toegediende dosis lager is dan de drempeldosis.

Bepaalde gevolgen komen enkel voor bij bestraling op een bepaald tijdstip van de zwangerschap.

- 1 tot 4 weken: Spontane abortus
- 5 tot 27 weken: Misvormingen, vooral mentale achterstand
- De meest kritische periode bevindt zich tussen de 10 en 17 weken
- Hele zwangerschap: Risico op kanker

Indien een verpleegkundige, tewerkgesteld op de dienst radiologie zwanger is, dient zij dit onmiddellijk te melden aan haar diensthoofd. Er zal dan uitgekeken worden naar aangepast werk. Het zwanger personeelslid hoeft niet meer in de zaal waar RX opnamen plaatsvinden te werken. Zij wordt dan ingeschakeld om hulp te bieden bij het maken van echo's of CT's.

Indien een patiënt zwanger blijkt te zijn kan er, indien er geen andere mogelijkheid is toch gebruik gemaakt worden van ioniserende straling. Zwangeren bij ons in het pijncentrum krijgen geen infiltratie. Men zal trachten hen op een andere manier te helpen. Principes van rechtvaardiging, optimalisatie en dosimetrie primeren (ALARA).
5. Röntgenstraling

In ons pijncentrum wordt er uitsluitend gebruik gemaakt van dit soort straling d.m.v. de C-boog.

Röntgenstraling of RX- stralen, vernoemd naar de ontdekker Willem Röntgen in 1895.

Deze straling is elektromagnetisch met een iets grotere energie dan zichtbaar licht en ultraviole licht. Men spreekt van röntgenstraling als de golflengte van de straling tussen ongeveer 1 pm (picometer) en 10 nm (nanometer) ligt.

Het is tevens een vorm van ioniserende straling en kan in stoffen waar zij op valt chemische reacties teweeg brengen. Bij levende weefsels kan dit schade opleveren ter hoogte van het DNA. Onnodige blootstelling aan deze stralen dient derhalve ook vermeden te worden. Om de juiste punctieplaats te bepalen bij interventionele behandelingen is het gebruik van röntgenstraling binnen ons pijncentrum onontbeerlijk.

Echter: Er dient steeds rekening gehouden te worden met het ALARA principe (As Low As Reasonably Achievable).

Röntgenstraling wordt opgewekt in een vacuümbuis. In een vacuümbuis bevindt zich een cathode (negatieve plaat) waar elektronen worden vrijgemaakt. Tussen de cathode en de anode (positieve plaat) worden de elektronen zodanig versneld dat ze een enorme kinetische energie krijgen. De spanning tussen de cathode en de anode is ongeveer de helft van de lichtsnelheid (100KeV). De anode bestaat uit een ronddraaiende schijf van wolfram. Door de botsing van binnendringende elektronen in de anode, zullen de meeste elektronen botsen tegen de atomen van de wolfram atomen. Door dit soort botsingen krijgen de elektronen in de anode en ook de wolfram atomen steeds meer kinetische energie, en stijgt de temperatuur. Het oliebad rond de röntgenbuis is bedoeld als koeling. Ongeveer 90% van de vrijgekomen energie is warmte en 10% is straling. De elektronen die vlak in de buurt komen van één van de atoomkernen van de anode veroorzaken de straling. Deze röntgenstraling kan door een venster naar buiten komen. Meestal zit er in het venster
een filter om de zachte röntgenstraling er uit te filteren. De röntgenbuis is omgeven door een loden kast om te verhinderen dat de straling er in alle richtingen uit komt.

X-stralen die zich in de ruimte bewegen worden tegengehouden door materie. Elke materie laat stralen op een andere manier door. Bot laat minder straling door dan bijv. longweefsel. Het is van dit verschil van doorlaatbaarheid dat men gebruik maakt bij diagnostische beeldvorming (Hounsfield units).
5.1 De C-boog

De C-boog is een toestel dat bestaat uit een C-arm met aan één kant een X-stralen bron (stralingsbuis) en aan de andere kant een detector (beeldversterker).
Het scopietoestel is gekoppeld aan een monitor waarop het beeld verschijnt. Hoe dichter de detector zich bij het object bevindt hoe scherper de beeldjes.
Vermits de patiënt stil moet blijven liggen op de behandeltafel, is het noodzakelijk dat het toestel in verschillende dimensies moet kunnen bewegen.
De C-boog, kan zowel voor-en achteruit en naar links of rechts verplaatst worden.
De verticale zuil kan in hoogte verplaatst worden, en de C-boog kan naar links of rechts zwenken. Verder kan hij ook kantelen en roteren.

Via het klavier op het toestel kan men het beeld op de TV monitor in wijzer of tegenwijzerzin laten roteren, vergroten of spiegelen.
Tevens zijn er toetsen voor contrastinstellingen, het collimeren, en bestaat de mogelijkheid om gepulseerde scopie te geven.

De gemaakte opnames kunnen worden opgeslagen en in het patiëntendossier bewaard worden.
En een zeker niet onbelangrijk gegeven is dat voor elke patiënt de stralingsdosis kan worden afgelezen.
6. Transforaminale lumbale epidurale infiltratie

Bij dit soort van infiltratie wordt de epidurale ruimte aangeprikt ter hoogte van de zenuwen die uit de wervelkolom vertrekken. Met behulp van röntgenapparatuur en contrastmiddel kan de arts nauwkeurig de juiste behandelplaats bepalen en controleren of het geneesmiddel op de juiste plaats terecht komt.

6.1 Indicaties

Deze infiltraties worden gegeven voor pijnklachten in de rug die kunnen uitstralen tot in de benen. De oorzaak is meestal een hernia of artrose, waardoor er druk op de zenuwwortel of het ruggemergvlies ontstaat met pijnklachten als gevolg en eventuele tintelingen in de benen.

6.2 Soorten

De transforaminale lumbale infiltratie kan onderverdeeld worden in twee soorten.

6.2.1 Therapeutische infiltratie

De therapeutische infiltratie is een procedure waarbij er een lokaal verdovend middel wordt toegediend samen met een corticoïde. De medicatie vermindert de ontsteking en de zwelling rond de zenuwwortels en het ruggemergvlies. Daardoor nemen de pijnklachten en eventuele tintelingen in de benen af. Meestal volstaat één behandeling niet en worden er twee of drie herhalingen gepland met een tussentijd van minimum 1 week.

6.2.2 Proefblokkade

Bij een proefblokkade wordt er enkel een verdovend middel toegediend. Meestal met als doel de diagnose te verfijnen en aan te vullen met een meer definitieve behandeling.

6.3 Procedure

De brochure over de behandeling wordt aan de patiënt overhandigd tijdens de raadpleging. Hierin bevindt zich een los formulier, met name het anamneseblad en toestemningsformulier. Dit blad moet door de patiënt gelezen en ondertekend worden. (informed consent).

6.3.1 De infiltratie

Er wordt een intraveneus infuus geplaatst. In de behandelruimte heeft de patiënt nog de tijd om vragen te stellen aan de arts. Vragenlijst en toestemtingsformulier worden nog eens samen met de patiënt overlopen. De patiënt wordt in buikligging op de behandeltafel geïnstalleerd. Saturatie en hartritme worden gedurende het hele verloop van de procedure opgevolgd.
De arts bepaalt de juiste positie van infiltratie met de C-boog (1), terwijl de verpleegkundige het steriel veld klaarmaakt en de nodige medicatie binnen handbereik legt. Na ontsmetting van de huid wordt er een steriele doek gekleefd, dit om de procedure zo steriel mogelijk te laten verlopen. De huid wordt verdoofd met een lokaal verdovingsmiddel, zodat de patiënt bijna niets meer voelt van de verdere procedure.

Onder scopie wordt de naald op de juiste plaats gebracht. Wanneer men vermoedt dat de naald op de gewenste plaats zit, wordt het scopietoestel onder de patiënt doorgedraaid zodat het toestel een profielfoto weergeeft (2). Als ook dit beeldje voor de arts aanvaardbaar is, wordt het scopietoestel loodrecht (3) boven de patiënt geplaatst. Een kleine hoeveelheid contraststof wordt onder constante scopie ingespoten. Wanneer er door het toedienen van deze contraststof een mooie worteltekening zichtbaar wordt, pas dan wordt het mengsel van corticoïden en verdoving ingespoten.

![fig. 1](image1.png) ![fig. 2](image2.png) ![fig. 3](image3.png)

Na de behandeling verlaat de patiënt onder begeleiding van de verpleegkundige de behandelzaal. Saturatie en hartritme worden nog gedurende een twintigtal minuten opgevolgd. Bij procedures ter hoogte van de lendenwervels kan het zijn dat er nadien tijdelijk een warmtegevoel of krachtsvermindering is in het been van de behandelde kant. Dit is volledig normaal en verdwijnt binnen enkele uren. Na een half uur gezeten te hebben in de recovery en een half uur rondgewandeld te hebben mag hij zich door een begeleider naar huis laten brengen (de patiënt mag de dag van de infiltratie niet zelf autorijden).

6.3.2 Bronnen van straling tijdens de procedure

Lekstraling: Is straling die door het buisomhulsel dringt. Het is af te raden dicht bij de röntgenbuis te staan.
Primaire bundel: Is de straling die uit het venster van de röntgenbuis treedt. Deze straling zorgt voor de eigenlijke opnames. Het is verboden voor de werknemer met enig lichaamsdeel in de primaire bundel te komen. Regelmatische blootstelling is dan ook gevaarlijk en aangepaste beschermingsmaatregelen zijn een must.

Strooistraling: Deze straling ontstaat wanneer de primaire bundel een object treft. De verstrooiing kan in alle richtingen optreden en levert geen bijdrage aan de beeldvorming op. Ze is gevaarlijk en aangepaste beschermingsmaatregelen zijn noodzakelijk.

6.3.3 Beschermingsmaatregelen tegen de straling tijdens de procedure

De arts en verpleegkundige die in de behandelruimte werken dragen een loodschoort en een schilklier beschermer. De persoonlijke dosimeter wordt op borsthoogte onder de loodschoort gedragen. Tijdens de procedure dragen zij een loodbril. De behandeltafel is voorzien van loodflappen om strooistraling tegen te houden. De arts maakt gebruik van loodhandschoenen.

Bij het plaatsen van de C-boog dient men ervoor te zorgen dat de detector zo kort mogelijk tegen de patiënt gepositioneerd is. Bij een profielopname zorgt men ervoor dat men voldoende afstand behoudt tot de röntgenbuis. Hierbij wordt gedacht aan de kwadratenwet.

Bij het veranderen van de C-boog naar een andere positie wordt er blind gepositioneerd d.m.v. de laserstraal. Ook worden de beeldjes bij elke positieverandering van de C-boog opgeslagen. Deze worden dan op het rechter TV scherm zichtbaar, en kunnen, indien nodig geraadpleegd worden tijdens de verdere procedure. Eens men een juist beeld heeft van de punctieplaats, kan men het beeld diafragmeren. Het beeld wordt scherper en er is een reductie van straling.

Kort samengevat kan men stellen: - Blind centrereren - Huid- focus afstand - Kv-mAs getal - Gebruik gepulseerde doorlichting - Vermijd de primaire stralingsbron - Afdriafragmeren - Afstand tot de bron vergroten
- Afschermingsmiddelen
- Een betere beeldkwaliteit resulteert in een hogere dosis
- Een verminderde dosis voor de patiënt geeft een verminderde dosis voor de verpleging.

De deur wordt onmiddellijk na het binnenkomen gesloten. En op elke toegangsdeur staat vermeld dat men een ruimte betreedt waar gewerkt wordt met ioniserende stralen.

7. Wetgeving rond stralingsprotectie

Het werken met ioniserende stralen wordt in ons land streng gecontroleerd. De veiligheidsmaatregelen zijn in België vastgelegd in het KB van 20 juli 2001: ARBIS (algemeen regelement op de bescherming van de bevolking, van de werknemer en het leefmilieu tegen het gevaar van ioniserende stralen. De controle instantie FANC (federaal agentschap van nucleaire controle) ziet toe op alle inrichtingen die werken met ioniserende stralen.

Taken van het FANC:

- Controle op de manier van werken met straling, infrastructuur, patiënten bescherming, personeelsbescherming.
- Uitreiking vergunningen voor het gebruik van röntgenstraling
- Wordt door het gouvernement ingericht en betaald. Heeft een inspectierecht en een sluitingsrecht.

NB: Ook de burgemeester heeft een sluitingsrecht

In het KB van 2001 vindt men onder andere volgende richtlijnen terug:

Vergunningen van installaties, activiteiten en personen.
Erkenningen van toezichthoudende deskundigen
Proportionaliteit: "graded approach".

8. Algemene beschermingsprincipes

8.1 Basisnormen

Rechtvaardiging: De verschillende activiteitstypes met blootstelling aan ioniserende stralen moeten kunnen gerechtvaardigd worden. De voordelen moeten worden afgewogen versus de gezondheidsrisico's.

Optimalisering: het ALARA principe moet gehandhaafd worden.

Dosislimieten: de maximale dosislimieten moeten in acht genomen worden. Voor het publiek is dit 1mSv/jaar. Beroepshalve 20mSv/j. Onderstaande tabel geeft de dosislimieten aan die in de Belgische wetgeving zijn opgenomen; Deze limieten werden bepaald om een zo laag mogelijk, maar aanvaardbaar risico op stralingseffecten te bekomen. De opgegeven waarden zijn voor 12 glijdende maanden.

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Totale lichaam</th>
<th>Delen van het lichaam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beroepshalve blootgestelde werknemers (inbegrepen vrouwen die kinderen kunnen voortbrengen)</td>
<td>20mSv</td>
<td>500mSv voor handen, polsen, enkels, voeten en huid. 20mSv voor de ooglens</td>
</tr>
<tr>
<td>Het publiek</td>
<td>1mSv/jaar</td>
<td>50mSv voor handen, polsen, enkels, voeten en huid. 15mSv voor de ooglens</td>
</tr>
<tr>
<td>Zwangere vrouwen tijdens hun zwangerschap</td>
<td></td>
<td>1mSv t.h.v. het abdomen tijdens hun zwangerschap</td>
</tr>
<tr>
<td>Vrouwen tijdens de borstvoeding</td>
<td>Niet werken met open bronnen</td>
<td></td>
</tr>
<tr>
<td>Leerlingen en studenten van 18j en ouder in het kader van hun studies</td>
<td>20mSv</td>
<td>500mSv voor handen, polsen, enkels, voeten en huid. 20mSv voor de ooglens</td>
</tr>
<tr>
<td>Leerlingen en studenten tussen 16j en 18j in het kader van hun studies</td>
<td>6mSv</td>
<td>150mSv voor handen, polsen, enkels, voeten en de huid. 20mSv voor de ooglens</td>
</tr>
</tbody>
</table>

8.2 Fysische controle

Controle door een erkende instelling. Bij ons is dit Controlatum. Bij vergunnings van klasse 2 is er een trimestriële controle (nucleaire geneeskunde en radiotherapie). Bij vergunningen van klasse 3 is er een jaarlijkse controle (radiologie). De fysische controle bestaat uit twee gedeeltes, enerzijds controle van het toestel zelf, anderzijds een controle over hoeveel straling het toestel nu effectief uitzendt.

Naar de toekomst toe zou er in elke instelling die werkt met ioniserende stralen een fysicus van de eigen instelling deze controle moeten uitvoeren en zullen er agenten worden ingezet om te controleren of iedereen de vereiste beschermingsmaatregelen neemt (wordt waarschijnlijk verwacht in 2018).
8.3 Medisch toezicht

Opvolging van klassieke risico's en specifieke stralingsrisico's. Dit gebeurt jaarlijks. Jaarlijks wordt er een bloedafname gedaan bij alle werknemers die in contact komen met ioniserende stralen. Dit om een referentiewaarde te hebben moest er zich ooit een probleem voordoen (complet formule, reticulocyten en trombocyten).

8.4 Informatie en vorming

De werkgever is verplicht de werknemer, blootgesteld aan ioniserende straling te informeren over alle aspecten die het werken met ioniserende stralen met zich mee brengt, en dit voor de tewerkstelling. Ook is de werkgever verplicht al naargelang de behoefte van de werknemer, en minstens jaarlijks de nodige opleiding te voorzien. Deze informatie heeft betrekking op:
- Het kennen, herkennen en vermijden van risico's.
- Algemene beschermingsmiddelen.
- Veiligheidsfactoren zoals afstand, pantering, tijd.
- Individuele bescherming zoals emblemen van verboden toegang, individuele beschermingsmiddelen, dosimetr.

9. Dosimetrie

Elke werknemer is verplicht zijn persoonlijke dosimeter te dragen onder de loodschort, op borsthoogte. Op het einde van het jaar wordt voor elk personeelslid de gecumuleerde dosis via een stralingsfiche overgemaakt aan de bevoegde diensten van het FOD. Een kopie hiervan wordt ook bewaard op de preventiedienst van het ziekenhuis. Deze resultaten worden 30 jaar bewaard.

Tot slot kunnen we stellen dat de werkgever verplicht is aangepaste beschermingsmiddelen en dosimeters ter beschikking te stellen aan de werknemer. Het is aan de werknemer om hiervan gebruik te maken.

10 Stralingsbescherming

Diagnostisch en therapeutisch gebruik van ioniserende stralen zijn van groot belang in de geneeskunde. Een wel overdacht gebruik van zowel toestel, alsmede het gebruik van persoonlijke beschermingsmiddelen kan het risico op schadelijke effecten reduceren.
10.1 Beschermingsmiddelen voor de patiënt

De patiënt is vrij passief in het hele proces, doch wordt zoveel mogelijk door de wetgeving beschermd.

Patiënten steeds inlichten dat men gebruik maakt van ioniserende stralen.

Bij vrouwelijke patiënten steeds vragen over een mogelijke zwangerschap. Bij twijfel wordt er aan de patiënt gevraagd om een bloedafname te laten doen. De infiltratie gaat die dag niet door, men wacht op het resultaat van de bloedafname.

Indien mogelijk de patiënt afdekken. Daar wij behandelingen uitvoeren ter hoogte van de lumbale wervels, is het niet mogelijk om protectiematerialen te gebruiken om de gonaden of het bekken af te schermen.

Gebruik maken van gepulseerde scopie. Dit is eveneens moeilijk, want als het beeldje minder scherp wordt, dient er opnieuw een beeldje gemaakt te worden. De stralenbundel kleiner maken door te collimeren. Regelmatig beeldjes op de rechter monitor opslaan als referentiebeeld.

10.2 Beschermingsmiddelen voor het personeel

10.2.1 De Loodschort

Deze is bedoeld om onderliggend weefsel te beschermen tegen ioniserende stralen. De loodschort is bedoeld om de romp af te schermen tegen de stroomstraling, voornamelijk afkomstig van de patiënt. De schort is niet bedoeld als bescherming tegen de primaire bundel. De beschermende werking hangt af van de looddikte en de pasvorm. De looddikte is terug te vinden aan de binnenkant van de schort. Gangbare diktes zijn: 0.25 mm, 0.35 mm en 0.50 mm equivalent. De loodschort wordt steeds gedragen in de behandelzaal. Jaarlijkse controle op scheurtjes in het lood is verplicht.
10.2.2 De schildklierbeschermer

Ook hier hangt de beschermende werking af van de looddikte en de juiste pasvorm. De schildklierbeschermer wordt steeds gedragen in de behandelzaal. Jaarlijkse controle op scheurtjes in het lood is verplicht.

10.2.3 De loodbril

Vermits de ooglens zeer stralingsgevoelig is, is het dragen van een loodbril aangeraden. Er bestaan ook overzetbrillen uit lood om over een gewone bril te dragen.

10.2.4 Loodhandschoenen

De arts die de infiltratie uitvoert maakt gebruik van loodhandschoenen.
10.2.5 De infiltratieruimte

Deze ruimte is volledig afgeschermd. Op elke toegangsdeur (2) bevindt zich een radioactief embleem.

10.2.6 De afstand

Afstand tot de stralingsbron is elementair. Omgekeerde kwadratenwet voor straling uit een puntbron is van toepassing. Tweemaal verder weg geeft een viermaal zwakkere uitstraling per oppervlak. Driemaal verder weg geeft negen maal minder straling per oppervlak.

10.2.7 De tijd

Hoe korter de blootstelling aan straling, hoe lager de dosis.

10.2.8 Dosimeter

10.2.9 Opleiding

Elke werknemer dient voor aanvang op een werkplek waar met ioniserende stralen gewerkt wordt, de nodige informatie te krijgen over radioprotectie. Daarnaast moet er ook een aangepaste vorming, specifiek gebonden aan de arbeidsplek voorzien worden. Deze vorming dient eenmaal per jaar voorzien te worden en ook bij het gebruik van nieuwe toestellen of nieuwe technologie. Verpleegkundigen en paramedici zijn verplicht om de basisopleiding radioprotectie te volgen.
Besluit

Medische beeldvorming, verantwoordelijk voor ongeveer de helft van de stralingsbelasting biedt, op zowel diagnostisch als medisch vlak enorme voordelen op.

Gegevens vanuit het FANC en RIZIV zien een stijgende tendens in het gebruik van ioniserende straling.

België is een van de koplopers van het gebruik van ioniserende stralen en kent het hoogst aantal CT's per inwoner (25 toestellen per miljoen inwoners).

Door deze stijgende tendens van het gebruik van ioniserende straling, alsmede het toenemend gebruik van straling bij bepaalde specialisaties in het operatiekwartier en de interventionele behandelingen in de pijncentra rijst echter ook de bezorgdheid over het toenemend aantal meldingen bij het FANC van deterministische effecten ten gevolge van de straling.

Verhoogde aandacht voor stralingsbescherming is dan ook een must.

Door het volgen van de cursus radioprotectie en het maken van deze paper, zijn Hulya en ik ons bewuster geworden over het gevaar van ioniserende stralen, en dit voor zowel de patiënt als onszelf.

Bij ons in het pijncentrum, wordt er op een bewuste manier omgegaan met straling, en worden er zowel maatregelen genomen om de stralingsdosissen te verminderen (passieve bescherming) alsook maatregelen om ons te beschermen tegen de stralen (actieve bescherming).

Stralingsprotectie blijft een dagelijks aandachtspunt. Colloga's en artsen erop wijzen dat alle maatregelen dienen genomen te worden om, zowel deterministische als stochastische effecten te voorkomen is dan ook van groot belang.

Medische beelden zijn geen vakantiekiekjes.
Literaire lijst

- Website van het FANC
- Eindwerk: "Stralingsprotectie bij URS 2013".
 "Een kerngezonde baby 2013".
- Opleiding stralingsprotectie 2017.
- Wikipedia: Wat is straling, ioniserende straling, soorten straling.
- Stralingswijzer. Blogspot.com
- Stralingspracticum nl.
- www.spacepage.be
- www.wetenschapsforum.nl
- Stralingsbescherming in het operatiekwartier.
- https://natuurkundeuitgelegd.nl
- Poolicht wikipedia
- https://erasmusmc.nl
- https://stralingsadviesonline
- www.encyclo.nl
- www.controlatum.be
- www.prevent.be
- www.health.belgium.be
- www.scholieren.com
- www.vub.ac/werken-studeren/X-stralen